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The goal is to prove, or understand the proof of the following theorem

0, n even

when x < min ("T_l, ”T_E’), the so called stable range. In particular we want to look out for the areas

where we might improve to integral results.

1 Sketch

First we need to define and understand the following spaces A(X), WhP (X)), QX ,, H(X), H(X), Diff%(D")
and C(X).
First the fiber sequence

Diff5(D"™) — Dift3(D") — Diff3(D")/Diff5(D")

induces a rational equivalence Diffy(D™) ~q Diff5(D")/Diff5(D™). There is a spectral sequence which
starts at B = 74(C(M x I?)) which converges to the homotopy groups of Diff%(D™)/Diff 5(D"), thus
if we can compute the psudo-isotopy groups then using this spectral sequence we can get the homotopy
groups we want.

If we know what these things are we will proceed as follows. We have a fiber sequence

BDiffy(D" ') — C(D™) — BDiff5(D"™)



which through spectral sequence techniques will allow us to compute the rational homotopy groups of
the discs if we knew them for the concordance groups.

The moduli space of h-cobordisms H(D"™) splits as H(D") ~ Why (m(D™)) x BC(D™) where Why
is, using m1(D"™) = 1, by definition Why(1) = K1(Z[1])/(£1) = K1(Z)/ £1 =TFy/ £ 1 = 1 the trivial
group, thus there is a weak equivalence between BC(M) ~ H(M). Igusa shows that in a range we have
that H(M) ~ H(M) the space of stable h-cobordisms. Therefore we have shown that to compute the
rational diffeomorphisms of discs, at least in a range, we just need to compute the rational homotopy
groups of the stable h-cobordism group. Now Waldhausen showed that

H(M) ~ QWhPH (1))

Thus it reduces to computing the rational groups of the smooth whitehead spectrum. Finally this can
be computed for a disc because we have that

A(X) ~ WhPT(X) x QX

which is has been done for the disc.

1.1 Integrally
Notice that we have weak equivalences on the nose (in a range) for
BC(D") ~ H(D"™) ~<; H(D") ~ QWhP(D")
which rationally extends to
BC(D") = H(D") =ye; H(D") = QWHP(D") 2 20 A(¥) =g K (2)

Thus by a careful analysis of the smooth whitehead spectrum of the disc we might hope to get some
integral results. To make this tighter I need to understand the precise integral relationship between
the A theory of a point and the K theory of the integers (is there one), and what the integral relation
between the Whitehead spectrum and the A theory of the point is.

Finally to get from the concordance group to the disc we need to inspect the spectral sequence
argument and see how much of thta relies on rational hypotheses.

2 Diffeomorphisms to Block Diffeomorphism

Diff5(D") ~g Diff%(D")/Diff5(D™) < BC(D") ~ H(D") ~<; H(D™) =~ QWhPT(D") ~ ;20 A(¥) ~g K(Z)

The group of diffeomorphisms acts on the group of block diffeomorphisms. If we beleive that this
group action is transitive then it will have trivial stabilisers. Now the quotient Diff%(D™)/Diff5(D"™)
has elements that are given by cosets, fDiff5(D") where f € Diﬂ?g(D"), which are clearly in bijection
with Diff5(D™) for any f. Thus at least on the level of sets we have a surjection

Diff%(D™) — Diff%(D")/Diff5(D")

and the preimage of any point in the quotient is in bijection with the required fiber.
The final point is to see that the block diffeomorphism group vanishes rationally.



3 The Spectral Sequence

Diff5(D™) ~q Diffy(D")/Diff5(D") < BC(D") =~ H(D") ~,<; H(D") ~ QWhPT(D") ~g ;0 A(x) ~¢ K(Z)

We start with a couple of definitions. Let D¥(M) be the quotient of simplicial groups (is it with
respect to k or something else), the diffeomorphisms of M x I* rel the boundary that preserve the
projection to I* on M x I* modulo those that always preserve the projection.

// image

Ck(M) is similarly the diffeos of M x I* x I rel boundary that preserver the projection I* x I on
M x I* x {0y UM x oI* x I.

//Image

Then there is a fibration

DFTY(M) — CF(M) — D*(M)

then taking the LES in homotopy groups we get a sequece that is exact except at the final arrow
<o = (DY) = mo(DFT) = o (CF) = mo(DF)—0

this can be made exact in the negative places, and then rolled up into an exact couple

Wsz(M)7
12>0 . . _ Dik Di—1k+1
ik Diff 5 (M) /Diff 5 (M),
else
WZCk(M)7
[ 2 0 — Eifl,k
0,
else

Summing over the k as well gives us an exact couple of bimodules that form the E' page of a homolog-
ically graded spectral sequence. It is a theorem that this SS is first quadrant and therefore converges,

moreover it converges to
E} (M) = mp4q1Diff5(M)/Diff5(M)

To understand the differential we first note that C*(M) ~ C(M x I*), thus connecting us to the
concordance spaces that we have previously computed. We will substitute these as the groups on the
E, page. There is then a pair of maps that will help us describe the differential

lr‘3S|M><1k*1><{1}
C(M x I*=1) C(M x IF)
v

0':7><id1

the bottom map is sometimes refered to as the stabilisation map because for k& << dim(M x I*) it is k
connected, that is a surjection on the k—th homotopy group and an iso on the ¢ < k homotopy groups.
The maps induced on homotopy groups we will denote 7, (res), o, respectively. The differential is given
by dy = m.(res). The other map will allow us to express this differential in a simple form in the stable
range.



Given an element g € C(N) then we can “reverse” it (intuitively reversing the direction of the
h-cobordism) by applying
_ L1 .
g3 = (9lnxqy xid;)  ogo (idy x 1)

where 7 : I — I,t+— 1 —t. This defines an involution. Now we can relation the stabilisation map to
this involution by two formulas:

dio.[g] = [g] + [9]
m = —0x [g]

Note that our ¢ is surjective in a range [Hat78], k£ < (dimM — 10)/6, although this bound has likely
been improved and so this first formula in a range can always be used.

3.0.1 Applying it to the disc

With this setup in mind we will start to compute the spectral sequence in the case that M = D".
First notice that we are starting on E' and are trying to deduce the E> page. Using the fact that we
can smooth corners, i.e. m;C(D" x I*) = m,C(D"**), the E' page is given by

0 mCD") ¢ (D) ¢ (D)
0¢+— mCD") ¢ (D" ¢ (D) ...

0 1C(D") —— 7C(D™Y) e O (D" H?)

The punch line of the theorems below is the following

W*C(Dn+k)@ ~ 7T*+2WhDiff(Dn+k)Q
T2 WhPT (5)g

0, *x4+2=0
K.y2(Z)g, else

0, else

Q) * = —2
Q, *=3(mod4), and x >3

1%

1%

I

1%

0, else
Q, *=3(mod 4)

where we have used that « > 0 . Notice that this doesnt depend on n + k and so the groups on each
row will all be the same, we get every fourth row starting at row three being Q ’s and the rest are
zeroes. Note that the Q ’s should be interpreted as the K theory of the integers, as this is how one



computes the differentials. Subbing in these values we get

11 Q Q Q
7 Q Q Q
3 Q Q Q
a/p 0 1 2

where everything else is zero. Now K;(Z)g has its own involution induced by the transpose inverse on
GL;(Z). This involution was computed by Farrell-Hsiang as given by multiplication by —1 for i # 0
and multiplication by 1 for ¢ = 0. The final fact is that we have a commuting diagram

Q=m_oC(D") —4 — Q= Ki(Z)g
O x(=1)

Q = Wi_QC(Dn) < Q = Kz(Z)Q

x(—1)H
which we can now use with our previous lemmas to compute the differentials in the stable range

2[f], n even

di(o.f]) = 1+ [f1 =[]+ (D))" [f] = {0 n odd

Thus the groups dont depend on the horrozontal axis but the maps do. Notice also that multiplication
by two is a rational isomorphism. Thus depending on whether n is odd or even the first map will
either be zero or an isomorphism and then it alternates from there:

neven: Q<< Q2 QE QL Q-

nodd: QL Q< QLlQl Qe -

In the even case clearly all the pairs cancel out in homology, in the odd case all the pairs except the
first Q cancel, so we are left with only Q ’s in the first column for n odd, and it is clear that the
sequence will have stabilised as the maps will never again go between two non-zero groups.

Remark. The involution defines a Z action on the E! page by —1.[f] — (—1)[f] between 7,.C(M x
I*). This action allows one to show that the E? page has a nice expression in terms of the group
homology of Zs.

4 Moduli of h-cobordisms

Diff5(D") ~g Diff}(D")/Diff5(D") <= BC(D") =~ H(D") ~,<; H(D") ~ QWh"T(D") ~g ;10 A(x) ~¢ K(Z)

First of all we define our terms. C(M) = Diff(M x I rel M x {0} UIM x I) is the group of
concordances, identified up to psuedo-isotopy. In pictures it is the diffeomorphisms of M x I that fix
the shaded region in4} The moduli of h-cobordisms of M is given by H (M), this is a topological space



I MxI

whose points are compact manifolds with a boundry with two components, one of which is M such
that there is a deformation retract onto both of the boundary components. Such h-cobordisms are
identified up to diffeomorphism fixing M. In other words its elements are just h-cobordisms between M
and another space. There are many suitable ways to topologise this, gives an explicit simplicial
set.

Because the disc is simply connected we may apply the h-cobordism theorem to see that any h-
cobordism between the disc and something else is just a cylinder (diffeomorphically), that is D™ x I.
Hence we have that all the elements of H(D™) are up to diffeomorphism just D™ x I. One subtilty is
that we are identifing cobordisms up to diffeomorphisms that fix M, thus we might write (or define)
that H(D"™) = Emby; (D™ x I, R*), where the subscript M denotes maps that fix M, and we take these
maps up to psudo-isotopy.

By the standard trick of “pulling out the middle” of the square in [4] and retracting the sides we
see that C(M) = Diff (M x I rel M x {0}) = Diff 5, (M x I), diffeomorphisms that fix one of the ends.
It is then clear (an embedding is a diffeo onto its image, if we fix an embedding then we can compose
with the diffeomorphisms to get all the other embeddings, this is like claiming that the action of the
diff group on embeddings is free and transitve and therefore it is a bijection by the orbit stabiliser)
that

Diffpr (M x I) = Embp (M x I,R™)

where both sides are up to psudo-isotopy.

5 Theorem of Igusa

Diff5(D™) ~¢ Diff3(D™)/Diff5(D") < BC(D™) ~ H(D") <1 H(D") ~ QWhPT (D) ~g 20 A(x) ~¢ K(Z)

Igusas theorem is that the suspension map

o CPH(M) — P (M x J)



is k connected (isomorphism on ¢ < k homotopy groups, surjective on others) for all compact smooth
n-manifolds with n > max{2k + 1,3k + 4}. has a section in the introduction summarising the
proof (for only a disc) which we will crib here.

The first step is to define what the suspension map is, for the case of the disc we will assume freely
that we can round corners. Then the suspension map is

o : Diff(D™) — Diff(D" 1)

given by f + f x id. In this case we are using that D" x [ = D"*!. The concordance group (of
smooth psuedo-isotopies) for D" is a subset of Diff(D"*1) and as such this clearly defines a sequence

C(D™) L (D" x I) — C(D" x I?) — - -

We want to show that the first map in the sequence is max {(n — 4)/3,(n — 7)/2} connected (the
bounds can be improved), we will go by a stable result first. So define the limit of the above sequence
as P(D") = colimC(D™ x I*). The stable result states that the induced map C(D") — P(D") is a
(split) epimorphism on 7 where k < (n —9)/2.

To show the stable result we begin by constructing a classifying space. Hatcher showed that

Diff(D") ~ O(n) x C(D"™ 1)

There is a free action Diff(D™) ~ Emb(D"™, R™). The orbit space is the space of submanifolds of R™
diffeomorphic to D™. By a lemma of Palise-Cerf we have that

Emb(D",R") ~ O(n)
And hence submanifolds of R" diffeomorphic to D™ is a model for the concordance group C(D"1)
Emb(D",R")/Diff(D™) ~ O(n)/Diff(D™)~Diff(D™)/O(n) ~ C(D"!)

Then using this the proof goes by using Cerf theory (“half Morse theory”) and Hatchers two index
theorem.

[WJIR] states that from the above theorem we get the equivalence required by delooping (suspend
or B?) once and iterating it follows that the infinite stabilization map HPY/ (M) — HPUI (M) is k+1
connected for k,n as above.

6 Theorem of Waldhausen

Diff5(D™) ~q Diffy(D")/Diff5(D") < BC(D™) ~ H(D") ~,<; H(D") = QWh"(D") ~ ;0 A(x) ~¢ K(Z)

This theorem is the content of [WJR]. We start with the definitional fiber sequence for PL manifolds
(PL and Top are the same in this context) given by

h(M; A(x)) — A(M) — WhPE (M)



where h(M; A(x)) is the cohomology with coefficients in the spectrum A(x). They then write down
the following large diagram:

HPE(M) ——— colim,, M} ————— colim, AM?

| | l

sEN(M) s hé.
| |

sD"(X) sD hD
l | |
sCM(X) sC hC

And the proof then proceeds by showing that the horizontal rows are homotopy fiber sequences, and
the middle and right columns are all homotopy equivalences. Therefore the fibers of the maps are also
homotopy equivalences. Then a theorem of Waldhausen implies that there is a homotopy equivalence

|sCh(X)| ~ QWhPE(X).

The moral of each of these equivalences is going from the first row to the second is viewing stably
framed PL manifolds as polyhedra and their bundles, M, as PL Serre fibrations, £. From the second
to the third row is vewing finite non-singular simplicial complexes, D,as polyhedra via the geometric
realisation. The final equivalence is vewing finite non-singular simplicial sets as finite general simplicial
sets, C.

Now from the PL case we deduce the smooth case, again using the defining fiber sequence for the
smooht White head spectrum

Q(M,) — A(M) — WhP* (ar)

The argument to go from the PL to Diff case is outlined on page (15). They use homotopy functors and
homotopy fibers of a bunch of maps to deduce some weak equivalences. Smoothing theory (Morlets
disjunction lemma) implies that some PL group is contractable. Then things are compared with
stabilisations.

Remark. Actually they show something stronger that not only is there an equivalence but that there
is a homotopy fiber sequence
HEE(M) — h(M; A(x) — A(M)

which follows from the homotopy equivalence above and the definitional homotopy sequence of the
Whitehead space, but we looped the space and so its place in the homotopy LES will move up one?

7 Homotopy groups of the smooth Whitehead spectrum

Diff(D") ~g Diff}(D™)/Diff5(D") <= BC(D™) ~ H(D") ~<; H(D") ~ QWhPH(D") ~g 0 A(x) ~g K(Z)

Both the Waldhausen A theory and the Whitehead spectrum are weak homotopy invariants on
path connected spaces and therefore it is clear that

A(D™) = A(x),  WHP(D") = WhPH (x)

Moreover we have that
QDY = QX (D" Ux) = Q%S



the sphere spectrum. At the level of spectra we have the decomposition
A(x) =S x WhPf (x)

The homotopy groups are taking a colimit and colimits preserve products (in a Cartesian closed
category such as spectra) so we have that

T A(x) = m,S @ 1, WhPH (%)

but the homotopy groups of the sphere spectrum are just the stable homotopy groups of spheres which
are all finite (therefore torsion) except in degree 0 where it is Z and so rationally

_J(Ze WOWhDiH(*)) ®Q, *=0
A ©Q= {mWhDiH(*) ® Q, else

Do these spectra have lower degrees? It is known however that moA(x) = Q and therefore we have
that (Z & moWhP T (x)) ® Q = (Z® Q) ® (moWhP" (%) ® Q) = Q hence moWhP" () ® Q = 0. Thus
what is left is to compute 7, A(%) ® Q for % # 0.

8 A theory of a point

Diff5(D") ~g Diff}(D")/Diff5(D") < BC(D") ~ H(D") ~2p<r H(D") =~ QWhPH(D") ~g ;20 A(x) g K(Z)

Kupers gives us a weak equivalence proof and of what?
Ends,(V,.S) HQ°°
We can compute the 7y of the right hand side (and therefore the left) as follows. First my commutes

with products so it suffices to compute 7Q2°°(S)", which we can do by appling adjunctions and the
fact that functions into products are products of functions

QX (S)" = [S°,Q%(S)"]
[20050 s"
= [£>°80, x50
=[5, S Litable
= (m3)"
_gn

and therefore we have that
FOEndSp(vnS) =7y HQDO(S)TL —_ HWOQOO(S)TL _ HZn _ Zn2

which is isomorphic to Endz(Z). This group of endomorphisms has a subgroup GL,,(Z). Therefore we
define a subspace of Endg,(V,S) by those functions that land in GL,,(Z) under 7y and call it GL,(S)
Not obvious that this is well defined, im using a lot of isomorphisms and a functor. There is therefore
by definition a surjection

M, (QS°)iq — GL,(S) = GL,(Z)



where we define M,,(QS);q to be its fiber over the identity in GL,,(Z). Here we have that QS° = Q°S.
Now the components of QS are weakly equivalent and therefore ]\»fn(QSU)id is weakly equivalent to

M (Q5%) ~ (Q5°)™

But since QS° = QS its homotopy groups are the stable homotopy groups of S° or the stable stems,
that is rationally zero in non-zero degree, as they are finite. Thus Except in degree zero the fiber is
rationally weakly contractable. Applying the LES in homotopy groups (rationally) therefore gives an
rational weak equivalence away from degree zero

GL,(S) —» GL,(Z)
If we take the disjoint union and the QB over n > 0 then we have a weak rational equivalence between

The RHS is the Quillen construction of K(Z) and the LHS is by a theorem of Waldhausen the A-theory
of the point. What is happeining in degree zero? Is this proof correct?

Remark. (Christian) The following was the "modern” perspective on this statement that was de-
scribed to me by Christian. First to take the K theory of a ring we would usually start with the
category of finitely generated projective modules over that ring. Instead we will “derive” this situ-
ation. Consider the category of perfect complexes over a ring, that is bounded chain complexes of
finitely generated free R modules. This category inherits the Waldhausen structure from the full cat-
egory of modules, with cofibrations just being degreewise cofibrations and weak equivalences are gism
of chains. This gives an equivalence of the K groups

K(f.g proj modules / R) — K (perfect R complexes)

given by including the module at degree zero (and then this induces a map on K theory). There is
also a clear map from the category of retractive spaces over a finite CW complex to the category of
perfect complexes over Z , given by Sing,, that is taking the singular chain. Note that these chains
will only be perfect up to quasi isomorphism. This is a functor of Waldhausen categories and so again
induces a map on K theory

A(x) = K(Z).

The next thing to change perspective on is the LHS of this equation. In particular given a nice
space X there is an equivalence of categories

finite retractive / X — perf (S[QX])

given by applying 2°°. The RHS is perfect modules over the ring spectrum S[QX ]) Given a ring there
is an associated ring spectrum which is specified by 75(HR) = 6;—oR. For any such ring spectrum
there is a unit map

€e:S— HR

and in the case of the integers this is a rational equivalence. The final step is to then compare these

new things, which is non-trivial but apparently possible using some newer results.

Remark. This deriving can maybe be thought of as something like Atiyah-Bott-Shapiro, in that the
chain is now a sequence of vector bundles.

Remark. A ring spectrum is the following thing: It is an object in the monoidal category of sym-
metric spectra that satisfyes the ring object diagrams only up to coherent homotopy. Notice that we
are not descending to the homotopy category. Such a thing is called an A,.-ring spectrum.
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